Stanford University

WORKING PAPER

Social Group Bias in AI Finance

Thomas R. Cook
Sophia Kazinnik


June 2025

Show buttons

Financial institutions increasingly rely on large language models (LLMs) for highstakes decision-making. However, these models risk perpetuating harmful biases if deployed without careful oversight. This paper investigates racial bias in LLMs specifically through the lens of credit decision-making tasks, operating on the premise that biases identified here are indicative of broader concerns across financial applications. We introduce a reproducible, counterfactual testing framework that evaluates how models respond to simulated mortgage applicants identical in all attributes except race. Our results reveal significant race-based discrepancies, exceeding historically observed bias levels. Leveraging layer-wise analysis, we track the propagation of sensitive attributes through internal model representations. Building on this, we deploy a control-vector intervention that effectively reduces racial disparities by up to 70% (33% on average) without impairing overall model performance. Our approach provides a transparent and practical toolkit for the identification and mitigation of bias in financial LLM deployments.

Stanford University