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Abstract 

In light of the increased prevalence of new information technologies, such as cloud computing and 

machine learning, traditional IT measures based on physical IT capital have become unreliable, 

while IT complementary human capital has become the new bottleneck. New IT technologies have 

thus, somewhat paradoxically, made the measurement of IT capabilities and their impact on firm 

productivity significantly harder than they already were. We create novel IT measurements based 

on industry-, and firm-level demands for IT skills and occupations from 2010 until 2022. Strong 

correlations with “official” productivity measures at the industry level validate our approach and 

suggest their usefulness at the firm level, where no official and reliable measures currently exist. 

We demonstrate that our measures are robustly associated with higher productivity at both the 

industry and firm levels, based on a battery of estimation techniques from the productivity 

literature. Our preferred firm-level estimation implies that a one percent increase in IT skills is 

associated with a 0.009 percent increase in total sales, which translates to an average gain of 

$540,000. Our measures are also positively associated with firm innovation, as measured by the 

total number of patents, citations, and real value of patents, suggesting that IT human capital drives 

productivity growth through innovation. Our methodology to define these human capital IT 

measures is general and simple enough to allow for future and backward-compatible extensions. 
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1. Introduction 

In 1978 Kravis, Heston, and Summers published the very first paper of the now 10th version of 

the Penn World Tables to more reliably measure GDP per capita (Kravis, Kravis, Heston, & 

Summers, 1978). They aimed “to fill, in an approximate way, a gap in the world statistical system 

arising from the absence of comparative data on real GDP per capita.” We now have the 

opportunity to offer the Information System (IS) community similar measurements for IT 

capabilities, measured in various manners, of industries and firms in the digital age.  

IT is among the most important and productive technologies of our era and has 

fundamentally transformed how firms operate. A large body of academic work has connected the 

adoption of such technologies to improved firm productivity (Bharadwaj, 2000; Tambe & Hitt, 

2012), innovation (Brynjolfsson & Saunders, 2009), customer reach, stock market returns, and 

supply chain management, among many other aspects. The application of IT is so ubiquitous 

across industry sectors that it has been argued to be a general-purpose technology (GPT) 

(Bresnahan & Trajtenberg, 1995). These technologies include machine learning (Brynjolfsson, 

Mitchell, & Rock, 2018), data-driven decision-making (Brynjolfsson & McElheran, 2019), and 

cloud computing (Jin & McElheran, 2017). 

However, measuring the ’technological stack’ of firms is very challenging — never mind 

causally identifying the impact of IT on firm productivity. Besides measurement challenges, one 

major obstacle arises from the necessity of complementary physical and human capital for IT 

(Brynjolfsson & Milgrom, 2012), along with the imperative for organizational changes and 

managerial practices (Bloom et al., 2019) to enable productive use. Given the need for these 

organizational adjustments, the productivity effect of IT often requires a substantial amount of 

time to materialize (Brynjolfsson et al., 2020). 

https://www.zotero.org/google-docs/?aZ74Zv
https://www.zotero.org/google-docs/?aZ74Zv
https://www.zotero.org/google-docs/?ToeT7b
https://www.zotero.org/google-docs/?ToeT7b
https://www.zotero.org/google-docs/?tA3jH3
https://www.zotero.org/google-docs/?kpSGVs
https://www.zotero.org/google-docs/?qknSGU
https://www.zotero.org/google-docs/?qknSGU
https://www.zotero.org/google-docs/?eqYx36
https://www.zotero.org/google-docs/?6cX8AL
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In the past, counting physical IT equipment, such as PCs or central processor computing 

capacity, served as a reasonable proxy for firm-level IT data (Bresnahan, Brynjolfsson, & Hitt, 

2002; Brynjolfsson, Hitt, & Yang, 2002). With the rise of cloud storage and computing as well as 

machine learning, and the Everything-as-a-service paradigm, these types of measures break down 

and may even indicate a lack of IT capability. Renting computing and storage capacity has become 

increasingly cheap and easy, but measuring it reliably is impossible. Even if one could measure 

firms’ usage of such virtual hardware, it is much more important to understand how — instead of 

if — firms leverage it. Currently, existing measures are unable to capture such detail reliably. 

Traditional IT capital measures are unable to capture firms’ technological progress. For 

example, IT capital investment shares by industry and others4 have been virtually unchanged over 

the last decade and are heavily skewed towards the IT sector, as other industries outsource their IT 

infrastructure to AWS, Google Cloud, and Azure, among others. Bob Solow’s productivity 

paradox, namely that “you can see the computer age everywhere but in the productivity statistics”, 

has only worsened with modern technology innovation (Solow, Bob, 1987). In other words, 

traditional IT capital data predates the age of the cloud and cannot capture the meaningful IT 

advances that have happened across most industries (see Figure 1) and within firms. New IT 

technologies have thus made the measurement of industry and firm-level IT capabilities and 

productivity significantly harder than they already were.5  

An additional problem is due to accounting challenges for zero-price goods. IT is 

commonly used to provide free services, for example as platforms for communication, advertising, 

 
4 These include various types of IT capital expenditures and stocks based on (but are not limited to) the Annual Capital 

Expenditure Survey (ACES) by the US Census and the National Income and Product Accounts (NIPA) by the Bureau 

of Economic Analysis (BEA) under the Department of Commerce. 
5 From an accounting perspective, cloud services allow firms to access modern IT infrastructure with a highly flexible 

variable cost (e.g., operating cost) and through pay-as-you-go service modes rather than through IT capital investments 

(e.g., Byrne, Corrado, & Sichel, 2018; Jin, 2022). 

https://www.zotero.org/google-docs/?Lv20qQ
https://www.zotero.org/google-docs/?Lv20qQ
https://www.zotero.org/google-docs/?KTfRcs
https://www.zotero.org/google-docs/?USmolb
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or purchasing. A price of zero implies no (direct) profit and therefore leads to these services not 

showing up in GDP and productivity measurements.6 

Yet another reason why IT productivity increases may not have shown up in official 

statistics is that there may be significant lags in adoption or unlocking the technology’s potential. 

Previous GPTs, such as electricity, required a decades-long learning and adjustment period before 

manufacturers were able to take significant advantage of them (Brynjolfsson & McAfee, 2014). 

Could it be the same for recent information technologies? Given that there are significant IT 

productivity differences across countries, industries, and firms, learning and adjusting seem to play 

an important role (Bloom, Sadun, & Van Reenen, 2012). 

In many ways, recent information technologies are different from previous innovations 

(Agrawal, Gans, & Goldfarb, 2019). These technologies have achieved super-human performance 

on a wide range of (albeit relatively narrow and domain-specific) tasks and have the potential to 

directly or indirectly displace a large number of workers. Theories of routine-biased technological 

change (Goos, Manning, & Salomons, 2014) suggest that routine tasks will be most easily and 

quickly replaced, though the large cost savings associated with displacing more expensive and 

complex tasks and workers implies higher returns for investing in IT that can displace ’high-skill’ 

work. Notably, large language models and generative AI have the potential to impact even 

cognitive and creative tasks, such as writing and painting and suggest a theory of cognitive-biased 

technological change. 

The interconnectedness of today’s digital world also induces significant externality and 

network effects. IT may be adopted to steal market share from competitors instead of to increase 

profits. While improvement for selfish reasons and competition is in the vein of Adam 

 
6 See (Brynjolfsson, Collis, Diewert, Eggers, & Fox, 2019) for an in-depth discussion and a proposed alternative, 

namely GDP-B. 

https://www.zotero.org/google-docs/?fG8lKi
https://www.zotero.org/google-docs/?6SFh1K
https://www.zotero.org/google-docs/?ucU4wR
https://www.zotero.org/google-docs/?ZI1uUn
https://www.zotero.org/google-docs/?NImJpm
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Smith’s ’invisible hand’, IT may have significant negative externalities that turn market 

competition into a zero-sum game instead of a win-win. For example, many IT innovations are 

aimed at grabbing consumers' attention and time and lead to distraction and reduced worker 

productivity. Certain types of IT may therefore be relatively less productive compared to past 

innovations, such as electrification, and infrastructure developments. 

Part of the difficulty of measuring IT stocks and productivity is due to the inherent nature 

of these technologies: they are rapidly changing and innovating, at a pace virtually unmatched by 

earlier technologies, and much of their value and impact derives from complementary, often 

intangible investments in skills, business processes, and organizational capital. In the age of AI 

and low-cost, and easily accessible cloud-based services — also referred to as XaaS to encompass 

software (SaaS), platforms (PaaS), and infrastructure (IaaS) as a service, among others — the 

physical number of computers that a firm or an industry owns are no longer a meaningful measure 

of IT sophistication (Brynjolfsson et al., 2002). Even in 1987, Robert Solow summarized that ’you 

can see the computer age everywhere except in the productivity statistics. The rise of the 

productivity-enhancing effects of intangible IT has been documented through indirect 

measurement exercises of firm productivity residuals (Bartel, Ichniowski, & Shaw, 2007; 

Brynjolfsson et al., 2002) as well as market-based estimates of Tobin’s q. 

We argue that firms’ demand for IT human capital – IT skills and labor – is (i) a major 

component of IT sophistication, (ii) a critical complement to IT capital, and (iii) more easily 

measurable than IT capital and is therefore a better way to estimate firms’ IT capabilities. 

Specifically, we measure industries’ and firms’ demand for IT skills and labor through their US 

online job postings between 2010 and 2020.  

2. Data & Methodology 

https://www.zotero.org/google-docs/?XpXYHR
https://www.zotero.org/google-docs/?PiGUcB
https://www.zotero.org/google-docs/?PiGUcB
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We create three different types of definitions of IT metrics based on (i) occupational demands of 

job postings, (ii) skill demands of job postings, and (iii) combining occupation-level measures 

based on prior literature with occupational demands of job postings.  

The first set of metrics is directly calculated from the occupational demands of U.S. online 

job postings. This data, which we acquire from Lightcast, consists of roughly 330 million job 

postings and contains information on each job posting’s occupational code (based on the Standard 

Occupational Classification (SOC) system), industry code (based on the North American Industry 

Classification System (NAICS)), posting date, skill demands, and firm name, among many others. 

We then aggregate the job postings’ occupational demands to the firm (industry) level by taking a 

weighted average, with the weights being defined by the firm-level (industry-level) shares of job 

postings with a corresponding occupational code in a given year. 

The second set of metrics is similarly derived from Lightcast but leverages the skill 

demands instead of the occupation associated with each job posting. We derived this set of metrics 

based on over 16,000 skills in Lightcast’s legacy skill taxonomy.7 These are mapped into roughly 

800 skill clusters, which themselves are mapped into 27 skill cluster families. For example, the 

skill Python falls into the skill cluster ’Coding and Scripting Languages’, which itself falls into the 

skill cluster family ‘Information Technologies’. The ’Information Technologies’ skill cluster 

family defined by the Lightcast taxonomy naturally extends to a definition for identifying 

information technology skills within job postings, and thus firms and industries, but we also define 

skill-based measures that capture more narrow IT capabilities, such as cloud, machine learning 

(ML/AI), natural language processing (NLP), and cybersecurity. Some additional care is required 

 
7 Lightcast has expanded its taxonomy to cover over 32,000 skills since then. 
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to count and deal with skills, as some firms appear to engage in strategic signaling and demand 

significantly more skills for some job postings than can reasonably be supplied by job applicants.8 

The third, and final, set of metrics is derived by combining the Lightcast data with 

occupation-level metrics defined by prior literature, such as the Suitability for Machine Learning 

(SML) (Brynjolfsson et al., 2018), among others. Using the number of job postings for each SOC 

code demanded by each firm and industry, we are then able to aggregate these occupation-level 

metrics to firm-, and industry-level metrics using a weighted average.  

Before explaining these three sets of metrics, we give an overview of the underlying job 

posting data. 

2.1 Job Postings from Lightcast 

We obtain detailed, annotated job postings data from Lightcast - a high-quality data source with 

comprehensive coverage of job posting portals beginning in 2010 and with increasing popularity 

in recent research (e.g., Acemoglu, Autor, Hazell, & Restrepo, 2020; Hershbein & Kahn, 2018).9 

Using these data we can create simple, yet insightful (and computationally-expensive) 

aggregations. We classify each job posting according to different categorical definitions and then, 

for each firm and industry, calculate its share of all job postings that fall within each category. 

2.2 Metrics Derived from Job Postings’ Occupational Codes 

Using the SOC taxonomy, we derive several occupation-based IT metrics. Currently, we 

aim to capture (i) all computer occupations (SOC codes beginning with 15), (ii) Cybersecurity 

occupations, (iii) Machine-Learning-related occupations, (iv) Cloud-related occupations, and (v) 

 
8 Some job postings demand up to 400 skills according to Lightcast. This highlights a potential weakness of these 

data: they do not contain information on how important each skill will be for the actual job. Employers may also list 

substitute skills along with the skills they actually require - for example, they may demand R even though their 

codebase relies on Python. 
9 Lightcast provides partial coverage for 2007, but does not provide any coverage of job postings in 2008 or 2009. 

We therefore use Lightcast data starting from 2010. 

 

https://www.zotero.org/google-docs/?QMzXkp
https://www.zotero.org/google-docs/?xoIBVx


7 

NLP-related occupations. For each definition we then identify the shares of an industry’s (firm’s) 

job postings that do and do not fall into it: 

 

where  is the jth job posting, time,  and industry

, 

as defined by NAICS.10 For example, our definition of general IT skill capabilities is based on the 

‘Information Technology’ skill cluster family, while our definitions for cloud and cybersecurity 

are based on more narrowly defined skill clusters within our data.11 The definition for firms is 

analogous, except that calculations are done across firms instead of NAICS industries. 

2.3 Metrics Derived from Job Postings’ Skill Demands 

The Lightcast skills data is annotated via Lightcast’s industry-leading skill parser, which identifies 

skills in the job posting’s text and maps them into a detailed skills taxonomy. The skill taxonomy 

covers over 16,000 skills, which are grouped into over 600 skill clusters, which themselves are 

further grouped into 28 skill cluster families. The taxonomy was initially assembled from online 

resumes and is continuously updated through client feedback, research, and forums. K-Means 

clustering along with additional qualitative checks were employed to create meaningful skill 

clusters. Whenever new skills are added to the taxonomy, the labels are refit to the entire history 

of job posting data, which minimizes potential biases that may arise through Lightcast’s time-

varying ability to capture new skills.  

 
10 We omit the lists of SOC codes corresponding to each of our definitions here but these are available in the 

working paper and upon request. 
11 Several of our IT capability measures can be defined both through demand for skills, as well as occupations. See a 

use case of the cybersecurity IT capability measure in (Bana, Brynjolfsson, Jin, Steffen, & Wang, 2021). 

https://www.zotero.org/google-docs/?7zHgNk
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Notably, the Lightcast taxonomy is significantly more detailed than other skill taxonomies, 

and thus allows micro-level insights into which specific skills employers demand. The O*Net skill 

taxonomy, which contains 2 levels, with 35 skills grouped into 6 skill groups, is unable to provide 

such detail.12  

The methodology to derive industry-level IT measures based on job posting-level skill 

demands is similar to that of the previous section but requires an additional aggregation step. 

Specifically, we first create occupation-level skill demands as in Brynjolfsson and Steffen (2021). 

This aggregation accounts for the large heterogeneity in the number of skills that each job posting 

demands. This way, job postings that demand a very large number of skills do not outweigh job 

postings that demand fewer skills, which reduces potential biases due to job postings that may cast 

too wide of a net. Thus, for each job posting, pj, we start with the binary Lightcast skill vectors 

over the entire set of skills, S = S1, …., Sk, which we call S(pj) = (1[S1], . . . ,1[SK]), and normalize 

them to derive the weighted skill demands of each job posting:  

 

To put it in words, for our preferred skill-based measure, we first derive a weighted skill 

demand vector for each job posting. Before we can aggregate these job-posting-level skill demands 

to the industry-year (as well as firm-year) level, just like before, we define the following skill-

based IT metrics: Information Technology Skills, Cloud Skills, Cybersecurity Skills, and AI Skills. 

Again, there are many other possible, subjective definitions. Equipped with these different 

definitions of IT metrics, just like before, we aggregate from the job-posting to the corresponding 

industry-year (or firm-year) level, for each (i, t) combination, by summing the relevant skills: 

 
12 While the distinction between skill, task, ability, knowledge, tool, work context, or experience is not entirely 

clear, we believe that the Lightcast taxonomy gets closest to the layman understanding of skill and certainly closer 

than education or wage, which were commonly used in the past. 
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2.4 Metrics derived from Scholarly Work 

Our final set of IT metrics leverages measures defined by prior scholarly work. Specifically, we 

take the Work-from-Home (WFH) scores from Bai, Brynjolfsson, Jin, Steffen, & Wan (2021), 

which are based on Dingel and Neiman (2020); the Suitability for Machine Learning (SML) scores 

from Brynjolfsson et al. (2018); the abstract, routine, and manual task scores from Autor & Dorn 

(2013) , the Artificial Intelligence (AI), Software, and Robot technology scores from Webb (2020), 

and the AI scores from Felten et al. (2023). All of these scores are defined at the occupational, 6-

digit SOC level, which allows us to merge them with our industry-year (and firm-year) panel of 

occupational counts. To aggregate, we then take a weighted average of the occupation-level scores, 

where the weights are defined by the occupational counts. 

3. Results 

3.1. Industry-Level Analysis 

We start our analysis by examining the correlations of our Lightcast IT metrics with the official 

IT capital measures from the Bureau of Labor Statistics (BLS) and the Bureau of Economic 

Analysis (BEA). Overall, we find that while the correlation is positive and high at around 0.5 

across most measures, there are notable differences, which highlight the advantage of our new 

measure. 

Specifically, traditional IT measures suggest that the healthcare sector is the second-most 

IT capable, behind the IT sector, but ahead of the professional services sector and manufacturing. 

While there is no ground truth for the IT capabilities of industries, these numbers do not seem to 

represent anecdotal evidence on hospitals struggling with ransomware or other examples of bad 

https://www.zotero.org/google-docs/?60nBTG
https://www.zotero.org/google-docs/?60nBTG
https://www.zotero.org/google-docs/?60nBTG
https://www.zotero.org/google-docs/?SSMuD0
https://www.zotero.org/google-docs/?SSMuD0
https://www.zotero.org/google-docs/?SSMuD0
https://www.zotero.org/google-docs/?SSMuD0
https://www.zotero.org/google-docs/?l50XSO
https://www.zotero.org/google-docs/?l50XSO
https://www.zotero.org/google-docs/?l50XSO
https://www.zotero.org/google-docs/?rTCV89
https://www.zotero.org/google-docs/?rTCV89
https://www.zotero.org/google-docs/?rTCV89
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tech) and highlight the importance of considering human capital instead of just physical and 

software IT capital. Firms in the IT, manufacturing, and wholesale sectors invest in both physical 

capital, such as data centers, and automation machinery, as well as software and human capital. 

The professional services sector is known to be one of the leading investors in software and IT 

human capital but tends to outsource physical IT capital, such as through cloud services and data 

warehousing, leading to a significant downward bias in traditional measures when measuring IT 

investment. 

Importantly, this type of mismeasurement also significantly distorts the estimates of returns 

and productivity of IT. We first demonstrate in Figure 2 that our general IT skill measure, which 

is unavailable in traditional data, is positively and significantly correlated with total factor 

productivity (TFP). Further, our results indicate that this correlation increased over the last decade, 

while the correlation between BLS physical IT capital and TFP decreased. This suggests an 

increasing importance of IT human capital and highlights the contribution of our IT metrics. 

Overall, our measures are validated at the industry level, but we also created analogous measures 

of IT capabilities at the firm level, where no official measures exist.  

3.2. Firm-Level Analysis 

We start our firm-level analysis by matching our firm-level IT metrics from the Lightcast 

data with the Compustat data, which gives us access to public firms’ operational data including 

annual revenue, total employment, cost of goods sold, and total assets.  

Since Compustat and Lightcast do not share a common firm identifier, we use a 

combination of name and address fuzzy matching to construct a bridge between Compustat and 

Lightcast data. We also follow Campello, Gao, & Xu (2019) and match the employers to the 

subsidiaries of Compustat firms using information extracted from historical Orbis data provided 

https://www.zotero.org/google-docs/?lgtmbb
https://www.zotero.org/google-docs/?lgtmbb
https://www.zotero.org/google-docs/?lgtmbb
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by Bureau van Dijk (BvD). We manually check the links identified to ensure the accuracy of our 

matching.  

We estimate the impact of IT human capital on firms’ productivity following conventional 

methods in the IT productivity literature (Brynjolfsson & Hitt, 2003; Tambe & Hitt, 2012). 

Essentially, we estimate a revenue-based Cobb-Douglas production function in the baseline 

models. Controlling for key inputs including total capital stock (i.e., total assets), total number of 

employees, cost of goods sold, and industry and year fixed effects, the estimated coefficient in 

Column 1 is positive and significant with a magnitude of 0.030. This indicates that a one percent 

increase in the total number of IT skills is associated with a 0.03 percent increase in total sales. 

This can be translated into 1.76 million dollars.  

In Columns 2 and 3, we add firm and year fixed effects to further control for firm-level 

time-invariant and slow-moving unobservable variables, such as organizational structure and/or 

management practices as well as other inputs including software investments, leverage, cash 

holdings, and R&D investments. The estimated coefficients for Log Total IT Skills are smaller in 

magnitude but stay positive and statistically significant at the 1% level. Further robustness tests 

using alternative IT measures (i.e., Log Total IT Job Postings), Translog production function, and 

estimating a value-added specification provide similar results. It is important to point out that 

although controlling for firm fixed effects addresses issues with time-invariant unobservable 

variables, it does not control for time-varying identification threats. Meanwhile, the firm fixed 

effects model may bias our estimates downward by stripping out slow-moving organizational 

complements that are important for IT to realize their productivity effect (e.g., Brynjolfsson & Hitt, 

1995) as well as by magnifying measurement errors in the panel study. 

https://www.zotero.org/google-docs/?Z73g5n
https://www.zotero.org/google-docs/?abofAf
https://www.zotero.org/google-docs/?abofAf
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One particular concern in the IT productivity literature centers on unobserved time-varying 

productivity shocks that may simultaneously boost output and IT investment. This kind of shock 

would lead to an upward bias on the estimated impact of IT on productivity. We address this 

concern using a series of widely adopted econometric models (Ackerberg, Caves, & Frazer, 2015; 

Arellano & Bond, 1991; Blundell & Bond, 2000; Levinsohn & Petrin, 2003) and report results in 

Table 2. These models have been demonstrated to perform well in the prior IT productivity 

literature (e.g., Tambe and Hitt 2012).  

Column 1 in Table 2 uses the semiparametric method developed by Olley & Pakes (1996), 

which uses capital investment (both structure and equipment) as a proxy for unobservable shocks 

that could lead to a spurious correlation between IT investment and productivity. Column 2 

instruments for unobserved shocks with the cost of materials (Levinsohn and Petrin 2003). 

Ackerberg et al. (2015) discuss the limitations of the aforementioned approaches and propose an 

alternative. We present their estimator in column 3. Column 4 uses a System GMM estimator, 

relying on 2-period lagged differences for all variables to instrument for current-period investment 

levels (Arellano and Bond 1991, Blundell and Blond 2000), which addresses potential endogeneity 

concerns of IT human capital in the productivity estimation. The coefficients on Log Total IT 

Skills remain positive and significant at the 1% level. In addition, they are also consistently higher 

compared to the result from the Pooled OLS model in Column 1 Table 1. This pattern across 

models with varying and distinct identifying assumptions is consistent with a downward bias on 

the baseline estimates, further suggesting that our findings are likely causal. 

While so far we built a causal link between firms’ IT skill acquisitions and increased 

productivity, the mechanism through which this increase occurs is unclear. One channel we 

explore is the impact of IT skill acquisition on innovation (e.g., Brynjolfsson & Saunders, 2009; 

https://www.zotero.org/google-docs/?EBSBjP
https://www.zotero.org/google-docs/?EBSBjP
https://www.zotero.org/google-docs/?UO1mo3
https://www.zotero.org/google-docs/?3WcK4H
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Ravichandran, Han, & Mithas, 2017). We match our analytics sample with firms’ patent and 

citation data from the USPTO based on data provided by Kogan, Papanikolaou, Seru, & Stoffman 

(2017). In doing so, we gain access to information on the number of patents applied for, the number 

of patents issued, the real value of innovation, and forward citations. We estimate the association 

between IT skills and firms’ innovation outcomes using a model similar to the one used in Column 

3 Table 1 and present the results in Figure 3. Although the magnitudes of the coefficients vary, 

they are all positive and significant at the 1% level, suggesting that firms’ IT skills are positively 

associated with innovation outcomes.  

4. Conclusion 

In light of the increased prevalence of new information technologies, such as cloud computing and 

machine learning, traditional IT metrics based on physical IT capital have become less reliable. 

The measurement of industries’ and firms’ IT capabilities and productivity has become 

increasingly challenging. IT-complementary skills and human capital have become operation-

critical and firms' demand for them is an important component of firms' IT capabilities. We revisit 

the IT productivity debate and overcome these data issues by leveraging large and granular data 

from online job postings to derive novel industry-, and firm-level measurements of IT capabilities, 

validate them against official numbers, where they exist, and derive novel IT productivity 

estimates from TFP regressions. We further provide evidence that our measure of IT skills is 

positively associated with firms’ innovation outcomes including patent filed and issued, and 

innovation values.  

We believe that making these metrics publicly available offers significant value to the IS/IT 

community and can help to shed light on the IT productivity paradox, firm productivity, and related 

questions. Our methodology to define these measures is general and simple enough to allow for 

https://www.zotero.org/google-docs/?3WcK4H
https://www.zotero.org/google-docs/?xHdWyo
https://www.zotero.org/google-docs/?xHdWyo
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future, and backward-compatible, extensions and we plan to build and release future versions in 

correspondence with the academic community.  
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Figures and Tables  

 

Figure 1: IT Skill Metric and IT Capital by Sectors  
Notes: Traditional IT capital investment shares (y-axis) have remained relatively constant over time and do not show 

the increasing IT capabilities across industries. It overrepresents the IT capabilities of the healthcare and information 

industries compared to our IT skill demand measure (x-axis). 
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Figure 2 Correlation between Lightcast IT Metrics and BLS Total Factor Productivity 
Notes: Binscatter plot using STATA 16. The Y-axis is the BLS annual total factor productivity for major industries 

(see https://www.bls.gov/productivity/tables/ for more information). The X-axis is the normalized IT skills measure 

calculated based on the Lightcast (formerly BGT) data. 

  

https://www.bls.gov/productivity/tables/
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Figure 3 Marginal Effects of IT on Innovation Outcomes 
Notes: Reported results are based on model specifications similar to column 3 Table 1. The control variables include 

all key inputs as well as logged software expenditure and R&D expenditure. The error bars indicate 95% confidence 

intervals.  
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Table 1 Productivity Effect of IT Human Capital (Baseline) 

Models 

  

(1) 

Industry 

FX 

(2) 

Firm FX 

(3) 

Added 

Controls 

(4) 

Alternative 

IT 

(5) 

Translog 

(6) 

Value 

Added 

LHS Variable Log Sales 
Log Value 

Added 

Log Total IT Skills 
0.030*** 

(6.94) 

0.010*** 

(4.30) 

0.009*** 

(3.55) 

  

  

0.008*** 

(3.16) 

0.014*** 

(3.66) 

Log Total IT Job Postings 

  

  

  

  

  

  

  

0.009*** 

(3.15) 

  

  

  

  

Log Total Assets 
0.153*** 

(12.39) 

0.117*** 

(7.43) 

0.093*** 

(6.36) 

0.094*** 

(6.37) 

0.087*** 

(6.53) 

0.147*** 

(6.41) 

Log Total Employment 
0.177*** 

(8.06) 

0.397*** 

(10.45) 

0.439*** 

(10.29) 

0.440*** 

(10.28) 

0.550*** 

(7.92) 

0.742*** 

(17.66) 

Other Controls   Y Y Y Y 

Year FX Y Y Y Y Y Y 

Industry FX Y N N N N N 

Firm FX N Y Y Y Y Y 

Number of Observations 24,646 24,451 18,985 18,985 19,433 18,487 

adjR2 0.944 0.987 0.989 0.989 0.972 0.989 
Notes: Log Total IT skills is the logged sum of the IT skills among all job postings. Log Total IT job postings is the 

logged total number of job postings in all IT-related occupations. Total assets is measured as the total Property, Plant, 

and Equipment. Columns 3-6 also control for lagged one-period cash holdings, dividend payout, and R&D expenditure 

over total assets. t statistics are reported in parentheses. * p<0.10, ** p<0.05, *** p<0.01. 
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Table 2 Productivity Effect of IT Human Capital (Identification) 

Models (1) 

Olley-Pake 

(2) 

Levin-Petrin 

(3) 

ACF 

(4) 

System GMM 

LHS Variable Log Sales 

Log Total IT Skills 

  

0.069*** 

(0.018) 

0.060*** 

(0.016) 

0.067*** 

(0.002) 

0.009*** 

(0.002) 

Log Total Assets 

  

0.111*** 

(0.010) 

0.103*** 

(0.012) 

0.120*** 

(0.012) 

0.051*** 

(0.013) 

Log Total Employment 

  

0.228*** 

(0.007) 

0.217*** 

(0.012) 

0.222*** 

(0.005) 

0.370*** 

(0.036) 

Other Controls Y Y Y Y 

Year FX Y Y Y Y 

Firm FX Y Y Y Y 

N 19,216 19,216 15,527 13,779 

Notes: Column 1 uses the semiparametric method developed by Olley and Pakes (1996), which uses capital investment 

(both structure and equipment) as a proxy for unobservable shocks that could lead to spurious correlation between IT 

and productivity. Column 2 follows the approach in Levinsohn and Petrin (2003), using expenditure on intermediate 

inputs (cost of goods sold) as a proxy for unobservable productivity shocks. Column 3 employs the method developed 

by Ackerberg, Caves, and Frazer (2006) to further account for collinearity problems when estimating productivity 

using the Levinsohn-Petrin techniques. Column 4 employs the system GMM estimator following Arellano and Bond 

(1991) and Blundell and Bond (2000). This specification passes both over-identification and autocorrelation tests. * 

p<0.10, ** p<0.05, *** p<0.01. 


