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Executive Summary 
Background. 
• The CHIPS and Science Act (CSA) created high stakes measurement challenges about 

research investments’ impacts on jobs, employers, education and workforce capabilities 
• The core components needed to address CSA requirements exist and have demonstrated 

value individually for over a decade 
• The Industries of Ideas project is building an end-to-end prototype system, piloting 

measures to meet CSA mandates and doing broad outreach to develop plans for scaling 
• This measurement approach anchors technology and industry classification, measurement, 

and system design on the people research investments support  
• We use scientific metadata to classify authors in specific fields, university administrative 

data (UMETRICS) to include all people paid by research grants, and state Unemployment 
Insurance (U-I) wage records to classify employers, industries and jobs 

• Field and industry classifications that can work across CSA focal areas are essential but 
underdeveloped 

• We propose a new strategy using social science concepts, network science measures, and 
deep learning models 

 
Classification strategy 
• Emerging technology areas are social and organizational research fields  
• Research field boundaries and contents are defined based on people 
• Classification has two-stages: 

o Domain experts help define a technology-specific “seed set” of researchers 
o a technology-agnostic semi-supervised deep learning model classifies additional 

investigators  
• Model design and input data are based on a clear, explicable framework to ensure legibility 

for stakeholders including domain scientists, university and business leaders, state agencies 
and federal policy-makers 

• Three dimensions of group membership - social proximity, affinity, and signaling – support a 
working data structure and model design 
 

Use and Extensions 
• Robust field classification will help the industries of ideas data system “follow-the-people” 

to classify industries associated with technologies, develop granular, timely measures to 
meet CSA requirements, and develop valuable products for universities, states and the 
nation. 

• The system can expand to assess the impact of AI testbed and compute resources and 
systematize measures of AI model and software development  

• Analytic extensions based on workforce data and deep learning models offer powerful new 
ways to examine “place-based” economic and industrial policy effects 

• Strong but flexible governance mechanisms to facilitate responsible, secure data access and 
streamline collaboration will enable many currently unforeseen measurement and 
evaluation possibilities 

https://new.nsf.gov/tip/updates/nsf-pilot-assess-impact-strategic-investments-regional-jobs


 2 

 
Introduction: We are playing for high stakes. 

Recent legislation that makes federal research investments in critical and emerging 
technologies a key lever for economic policy at massive scale has created pressing new 
measurement challenges.  The CHIPS and Science Act (CSA) of 2022 authorized $81 billion for 
NSF, allocating about $1 in every $4 to the new Technology and Innovation Partnerships (TIP) 
directorate. TIP could become nearly 2.4 times bigger than today’s largest NSF directorate 
(Mathematical and Physical Sciences), controlling nearly 60% of today’s entire NSF research 
budget. 

TIP’s authorizing language foregrounds regional innovative capabilities, jobs, workforce 
and educational capacity, and broad concerns about equity and access.  It articulates an 
ambitious goal, to “ . . . advance research and development, technology development, and 
related solutions to address United States societal, national and geostrategic challenges, for the 
benefit of all Americans,”  and includes substantial measurement mandates.  By 2027, CSA 
requires a National Academies review that, among other things, assesses:  

• solutions to “ . . . challenges with social, economic, health, scientific, and national 
security implications;” 

• “. . . whether Federal investment in the key technology focus areas have resulted in new 
domestic manufacturing capacity and job creation;” and 

• “. . . education and workforce development to support the key technology focus areas.” 
 

Yet CSA funding for TIP was an authorization, not an appropriation, leaving open what 
Congress ultimately funds. If Congress antes up, TIP represents an enormous bet on the 
economic and social impact of research investments. If not, the expectations CSA created may 
hollow out traditional NSF research areas in service to its goals, with potentially devastating 
consequences for the very societal, national, and geostrategic needs the act seeks to bolster.  
Either way, the new measurement and reporting requirements are here to stay.  The ability to 
clearly, accurately, and reliably document what these investments do may help determine the 
act’s lasting consequences. Today, to the best of my knowledge, nobody can do the work that is 
needed. 
 
Key measurement challenges. 

No one can do this yet because there are real challenges. The first is classification. The 
key technology focus areas are not scientific research fields as they are conceptualized in any 
current classification system. They also are not industries, at least not in any way we currently 
conceptualize them.  Measuring inputs and outputs in a reliable fashion even for one field, AI, is 
difficult. We need to do it at scale, robustly, for all of them.  Our current classifications need 
serious rethinking.   

https://www.whitehouse.gov/wp-content/uploads/2022/02/02-2022-Critical-and-Emerging-Technologies-List-Update.pdf
https://www.whitehouse.gov/wp-content/uploads/2022/02/02-2022-Critical-and-Emerging-Technologies-List-Update.pdf
https://new.nsf.gov/about/budget/fy2023/appropriations
https://new.nsf.gov/about/budget/fy2023/appropriations
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The second challenge is about data 
requirements for granularity and 
aggregation.  TIP’s signature program is the 
Regional Innovation Engines (RIE). RIE 
applications currently define “regions” in 
terms of counties. They also specify a set of 
technologies. Figure 1 presents the “service 
area” for one RIE finalist proposal from TIP’s 
website. “Great Lakes ReNEW” proposed to 
serve a “region” defined by clusters of 
counties that fall within and across the 
boundaries of six states in the upper 
Midwest. 

 Meeting CSA mandates for the RIE 
program requires the capability to identify: 
(1) the fields where relevant investments 

are made and innovative solutions produced as 
well as (2) the industries where jobs, manufacturing, education, and workforce capabilities 
might result. Moreover, that capacity must encompass any possible pairing of one or more CSA 
technologies with any combination of counties. Granular technology by county data must be 
aggregable to the national level to examine program effects. Finally, making a start on assessing 
impact necessitates, at a bare minimum, the ability to describe change over time.   

Ideally, we would want causal estimates based on a variety of identification strategies.  
So a mature system should also include mechanisms for research access complete with means 
to ingest and link new data, appropriate privacy protections, essential data security, and all the 
other technical and legal infrastructure needed to allow responsible restricted data use.  Which 
points to the third challenge. 

This work will require new institutional and governance mechanisms that engage many 
autonomous, co-equal data owners – including states, corporations, federal agencies, and 
universities – in collaboratives with clear value propositions for each participant. Mechanisms 
to streamline formation and work by many different partnership configurations to meet 
different types of needs will be necessary.   

These requirements mirror the regional multi-sector collaboration for national goals 
logic of the CSA.  They also depart from traditional organizational models for national 
measurement, which typically center on the Federal Statistical Agencies.1 One emerging, 
complementary alternative is a variety of data federalism characterized by regional networks of 
public-private partnerships anchored on relationships between universities and state 
agencies.2,3,4  Such networks can very productively include multiple types of federal partners. 
 
Conceptual framework for classification. 

All the essential pieces of this system exist and have been individually proven through at 
least a decade of use. We are assembling the first full prototype that integrates all the core 
components to pilot measures that address CSA requirements. But a strong and clear 
classification strategy is essential. To do the job, that strategy must: (1) account for real 

Figure 1. Example TIP RIE Finalist Region 

https://tableau.external.nsf.gov/views/NSFEnginesType-2SemifinalistAnnouncement/Main?%3Aembed=y&%3AisGuestRedirectFromVizportal=y
https://new.nsf.gov/tip/updates/nsf-pilot-assess-impact-strategic-investments-regional-jobs
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differences among technologies; and (2) work across current CSA technologies and be 
expandable to new priority areas that arise. Three conceptual steps are necessary to meet that 
challenge.  
 
Treat research fields as a form of social organization. 
Technologies, like AI, are cases of a broader phenomenon long studied by social scientists.  Such 
research areas are institutional fields: recognizable arenas for collaborative and competitive 
work done by diverse sets of people and organizations in and through evolving networks.5 
Understood as a form of social organization, all contemporary research fields have more 
commonalities than differences. Indeed, one the most influential early descriptions of such 
fields famously asked why we consistently observe so much similarity among social and 
economic competitors.6   

Research fields share inputs – including funding sources and talent pools – and outputs 
– such as publications, patents, and trained people. The work that turns one into the other 
happens under similar “rules of the game.” Some rules, like those governing federal grant 
review or conflict of interest are more formal. Others, like expectations about what constitutes 
a strong dissertation, or an important finding are more informal. Research fields sometimes 
share broad logics of action7 like the sensibility –  “a rough sense of direction and an imperative 
to ‘get on with it’” – that some attribute to AI.8 

They involve many of the same players. It would come as little surprise if cybersecurity 
and AI were both defined by work done and people trained at the same 30-50 universities, by 
the employees of a similar number of firms and the investments of a much smaller group of 
funders. Perhaps more surprisingly, many of the same organizations are likely to be central to 
synthetic biology or advanced materials research. The organizations that help shape different 
fields certainly will not be identical, but substantial overlap is common and leads to similarity. 

Careers work in similar ways. The most successful people in each field move across 
these locations over their careers, collaborate with one another, hire each other’s students and 
trainees, build upon, critique, or formally review each other’s work. They serve together on the 
program, prize, and study committees that help set research agendas and define both the 
formal and informal rules of the game. The best students will often gravitate to the most 
central institutions and well-connected researchers as will many of the most attractive 
employers. These dynamics pose significant challenges for efforts to expand equity and 
broaden participation, but they also drive similarities in how research fields operate that we 
can leverage for classification.   

Conceptualizing technology areas as research fields and emphasizing points of similarity 
provides a solid, general basis for designing, training, validating, and explaining a “technology 
agnostic” classificatory model. Identified points of divergence, in contrast, provide leverage to 
capture salient differences in “technology-specific” model inputs.  Anchoring technology 
specific inputs and a technology agnostic model on a common, fairly intuitive conceptual 
framework offers a nice balance of flexibility, generalizability and explicability that serves the 
needs of this use case very nicely. 
 
Shift from documents to people to characterize fields. 
Speaking generically, most current research classifications:  
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• begin with a document corpus, 
• extract representations (e.g. topics) of the work they report from some portion of their 

text, 
• cluster those representations in some abstract “knowledge-space,” 
• use some algorithmically identified subset of representations to characterize a field. 

This conception of a “field” is fundamentally different than our social and organizational 
definition. It makes social organization the outcome of relationships among representations of 
ideas extracted from documents. It obscures many sources of commonality and stability that 
enable generalizable tools and clear measures of change. It increases sensitivity to rapid 
alterations in technology, substance, or terminology. These problems are amplified at the 
frontiers of fast-moving multidisciplinary research areas.  

We reverse the traditional logic and begin with social organization to identify people 
working in a field. Rather than saying AI researchers are those who work on some specified set 
of topics, we determine the topics that constitute AI at a particular time from the portfolio of 
work produced by AI researchers. Our “people-centric” classification follows the “operational 
definition” proposed by the AI 100 Year Study Panel: “AI can also be defined by what AI 
researchers do.“8 
 
Staring with people has four appealing features. It: 

• is robust to rapid terminological, methodological, and content shifts;  
• allows clear measurements of change in a field’s content because people shift much 

more slowly than the topics they study;  
• leverages network theory and measures to operationalize key dimensions of group 

membership, which supports a clear, explicable approach to data and model design; and 
• supports a framework and data architecture for industry classification that directly 

connects specific research investments to jobs and employers.  
Shifting from documents to people is the fundamental move that distinguishes “industries of 
ideas” classification from what has come before.  
 
Follow the people to identify the industries. 
Papers, patents, and other documents are certainly important, but putting people first is very 
useful. It aids with the practical necessities of data linkage and system building; addresses the 
key role tacit knowledge plays in work on research frontiers;9,10 and, by doing both, provides 
empirical and conceptual routes to connect investments in specific research fields to outcomes 
in clearly related industries that aren’t identifiable by standard means.  Put simply, people are 
the primary output of research investments. 

Empirically, we use people’s careers to integrate a linked data architecture that reaches 
from grants through university HR records to state workforce and employer information.  
Conceptually, we treat employers’ decisions to hire people trained through those research 
investments as concrete, often costly, commitments to the continued development or 
application of technologies related to the initial research investments.11 If AI is what AI 
researchers do.  AI industries are those where employers seek and pay to hire AI researchers.  
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As Paul Romer has noted: “Universities produce both papers and people. People with 
specialized problem-solving skills are the essential input into the discovery process, most of 
which takes place in the private sector. People with these skills are fuel that fires the innovation 
engine.”  

I have made a similar argument about how research universities make distinctive 
contributions to the public good.12 The framework outlined here is precisely aligned with the 
conceptual logic that governed the design of IRIS, the UMETRICS data13 and ongoing data 
linkages to administrative workforce data maintained by states and shared with federal 
agencies. Figure 2 presents an overview of the entire prototype system we are building for two 
research fields, AI and Electric Vehicles (EV), in a single state, Ohio. 

The research field classification that is the primary input to this system is our focus here. 

However, it is worth talking briefly about the other data this system will generate. The key 
challenge of any research classification that draws primarily on bibliometric data is that no 
matter how good it is it will miss people who have relevant skills developed through research 
but do not appear as authors on papers. That is quite common either because their roles do not 
generally lead to authorship (for instance in the case of staff), or because they are excluded 
from author lists.14  

We rectify that problem by linking data on authors and their grants to transaction level 
UMETRICS data, which lets us see everyone those grants pay whether they are faculty, staff, 
undergraduate students, doctoral students, or post-docs. This move dramatically expands our 
definition of the impact of research investments and also captures a much more extensive 
“tracer” set of individuals whose later career mobility can allow us to describe job, employer, 
and workforce implications for newly identified sets of industries.  

We classify the industries relevant to research fields using existing data infrastructures 
maintained by states that contain detailed wage records for all employees who are eligible for 

Figure 2. Industry of Ideas Data System 

https://paulromer.net/deep_structure_growth/
https://iris.isr.umich.edu/
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unemployment insurance (U-I). Universities are among those employers, so the people - both 
those identified as authors and those paid on grants who are not - represented in university 
administrative data can easily be linked to state U-I wage records. Their post-university 
employment describes the employers that have bid into a relevant research field by hiring 
research trained people from that field. The people they hire can be connected back to 
concrete research investments associated with specific technologies.  

Once the employers associated with a research field are characterized, all the jobs they 
support and all the other employers and jobs in their traditionally categorized industries can be 
richly described. People and their careers provide the conceptual and empirical throughline 
that makes both system design and a measurement approach that can address CSA mandates 
possible. With appropriate institutional arrangements and partnerships, linkages to other types 
of state data such as K-12, higher education or social service information may become possible.  

A strong classifier is both an essential part of the larger data system we need to address 
the measurement challenges we now face and a tool that can be used with data from that 
system to expand our analytic horizons.  The results could simultaneously push knowledge in 
several fields forward and generate high value products for many stakeholders, creating a 
virtuous cycle and accelerating growth to scale. 
 
Implementing and Improving a Classification Strategy. 
 
What should a field classification system be able to do? 
A good field classification strategy should apply to multiple technology areas and be broadly 
legible to non-specialists. More specifically a strong classification approach should do four 
things:  

1. Identify core technical contributors. In AI, it should confidently classify researchers 
developing models and techniques at the frontiers of the field’s current technical core. 

2. Identify researchers applying tools from the field in diverse domains.  AI tools and 
models are used for many purposes across biomedicine, genetics, physical science, 
materials, information and social science, engineering, and other areas. Fully measuring 
the impact of research investments and effective industry classification both require 
reliable capture of sophisticated applications in many substantive areas. For some CSA 
technology areas, including AI, it may also be useful to identify researchers whose work 
addresses relevant ethical, legal, and social (ELS) issues. 

3. Classify individuals. One core task of a classification system is, well, classification. 
However, the first two needs highlighted above suggest the benefits of a categorical 
(e.g. core, domain, ELS) rather than a binary approach. 

4. Provide quantitative estimates.  Given the cross-cutting nature of many CSA technology 
areas, a regression approach that estimates the intensity of a given researcher’s 
engagement with AI or a continuous measure of proximity to the field’s technical core 
may prove more useful than a classification. For instance, researchers exclusively 
focused on technical improvements to deep learning models should be very closely 
associated with AI. Researchers who improve such models and work on non-AI 
substantive problems or those who address substantive questions with AI and non-AI 
methods might be less strongly associated with the field. Continuous estimates could be 
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used to construct measures for inferential analysis (e.g., weighted averages) or to allow 
analysts to vary thresholds for different use cases. If a reasonable measure of 
“direction” could be incorporated into a proximity estimate (e.g. moderately distant 
from the AI core in the direction of social science) to create a vector, even more 
nuanced analyses might be possible. 

 
Step 1: Defining a “seed set” of researchers. 
The general approach has two steps. First, consultations with domain experts help identify a 
plausible “seed set” of researchers. That seed group should offer an easily definable, face valid 
input or “starting point” for a more general, model-based second step, but it need not be 
comprehensive. It should take the distinctive social and organizational characteristics of the 
research field into account. 

This technology specific seed definition will typically emphasize the core technical areas 
of the field, but it should also 

include relevant domain 
researchers who are highly 
proximate to that core.  
This is not intended to be 
an exhaustive and 
exclusive “gold standard.” 
Rather, we seek a plausible 
initial definition of the 
field’s core participants. 
Including people who 
might be  “network 
bridges” into potentially 
far-flung domains where 
technologies developed in 
or near the core are 
commonly applied ensures 
that modeling can identify 
researchers applying AI in 
disparate substantive 

areas.   
For AI, we defined an initial seed set based on presentations at prominent AI and 

Machine Learning (ML) conferences.  Table 1 presents a list of those conferences. In 
collaboration with analysts at Elsevier, we identified people who had authored on at least one 
paper presented at any of these meetings since 2010. That highly international group of 
researchers included 94,235 individuals.   

 
Step #2: Model-based expansion 

Seed set researchers and associated data about their publication and grant histories, co-
authors, and affiliations provide the input for a technology agnostic model in the second stage 
of our classification approach. AI seed researchers were used as a labelled subset of all authors 

Table 1. AI Conferences That Define Initial Researcher "Seed Set" 
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in the Elsevier publication corpus.  We implemented a shallow Bayesian label propagation 
model15 on the unweighted co-authorship graph to classify unlabeled authors as potential AI 
researchers.  The model, which was implemented by collaborators at Johns Hopkins University, 
identified an additional 154,096 unique AI authors. It also successfully labelled 21,803 authors 
who were in the seed set but appeared in full co-authorship networks as unlabeled nodes prior 
to their first relevant conference presentation. In other words, more than 23% of seed set 
authors were publishing actively before their first AI conference paper, were captured by the 
label propagation model, and later observed as an author on an AI conference paper. 

Seed set and model identified authors included 248,331 unique researchers.  About 37% 
(97,379) listed U.S. affiliations on any of the 1.96 million research publications they collectively 
authored.  This represents an initial cut at a person-centric, social and organizational approach 
to AI classification that can potentially meet the first three requirements I lay out for a 
classification strategy.  

These nearly 250,000 people offer a reasonable first approximation of the global set of 
researchers likely to possess AI-relevant skills. Such skills could make them, their students, post-
docs, technical staff and close collaborators, attractive candidates for jobs tasked with 
developing or applying AI tools and technologies to existing or new products, services, or 
business processes. Due to our definition of the seed set and our model design, this group will 
include both core technical AI scientists and domain application researchers from many fields.  

 Using them as a starting point for an industry classification that depends on hiring as a 
marker of employer engagement with AI will thus identify firms active in a wide range of 
traditionally defined industries. By doing so we address one of the core challenges that 
animates this conference, the identification of “industries” that aren’t visible in traditional 
classifications. Nevertheless, this group faces a key limitation in that it only includes people who 
authored papers published in venues indexed by Elsevier. This is why linking the results of a 
field classifier to UMETRICS data before proceeding to industry classification and associated 
measurement adds important substantive and technical components to the larger 
measurement system.  

Validation and model improvement work is ongoing along with a test of the entire 
process on a second, very different technology, Electric Vehicles (EV). Early results suggest two 
important needs for refinement.  First, this initial model may have difficulty identifying 
technical AI researchers from outside computer science and computer scientists developing ML 
as a method to address other substantive issues who do not attend AI conferences. Second, 
and more importantly, the model is less effective at identifying domain application researchers. 
Accuracy seems to fall off most steeply in biomedical areas.   

Both challenges may result in part from model inputs. Our definition of the seed set may 
need to be expanded with a particular emphasis on including more researchers developing and 
applying AI methods to substantive problems, especially in biomedicine. Here I address the 
possibility that the challenges result from our initial label propagation model’s relative 
algorithmic and empirical simplicity.  I suspect that a shallow model relying solely on the co-
authorship graph imposes unnecessary limitations. As an alternative, I sketch a more thorough 
network conceptualization of group membership and outline a more sophisticated semi-
supervised deep learning model. 
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Conceptual Approach to Improving the Classification Model. 
Beginning with people situated in a socially defined research field allows us to treat 
classification as, fundamentally, a problem of establishing individual membership in a social 
group. The basic question we want to answer is “given some set of information about a person, 
X, can we say X belongs (or is more or less closely related) to a group, Y, for which we have 
comparable information about a set of known members.” Here X is an author on a scientific 
paper whose membership status relative to Y is unknown and Y is AI.  Our seed set authors are 
the labelled AI representatives.  The comparable information is a feature set drawn from 
bibliometric data. 
 Questions about groups and their members have been fundamental to Sociology for 
more than a century.16 More recently, network science has dramatically expanded relevant 
methods and measures.17–20 This classification problem is an effort to establish group 
membership using networks relevant to socially defined research fields. Viewing it that way 
offers well-established routes to justify and explain data and model design choices that align 
closely with our overall conceptual approach. Such theoretical and methodological integration 
contributes to the clarity, generality and legibility of the field classification and the larger 
measurement system of which it is an essential part. 
 In the very broadest terms, group membership is a function of three general 
mechanisms.  

• Social proximity – Traditionally, this is a literal question about physical proximity or 
kinship. But proximity can be framed socially in terms of non-familial relationships 
regardless of physical co-presence or consanguinity. When they are applied to graphs of 
social relationships among people, this sense of social proximity animates most current 
community finding algorithms.21–24  

• Affinity – Group membership can be based on shared likes and dislikes. People who like, 
talk about, and attend to similar things in similar ways will often identify as members of 
a group and act from those identities.25,26  

• Signaling – Sometimes group membership is as much about others’ perceptions as it is 
about an individual’s actions or beliefs. People’s actions can send signals to others 
(intentionally or not) about their membership in groups. Others can ascribe membership 
status (erroneously or not) to individuals based on things they infer from what they 
observe.27–29  

Typically, group membership means some combination of:  X is socially close to other members 
of Y; X feels and demonstrates a connection to members Y based on shared interests, language, 
and activities; and X makes (often symbolic) claims to membership in Y that others recognize 
and can accept or reject. This yields a few simple propositions. A researcher is an AI scientist if: 

• They are professionally connected to known AI scientists (social proximity) 
• They work on topics and use language similar to known AI scientists (affinity) 
• Their professional activities allow others to infer they are AI scientists (signaling) 

 
Operationalizing Dimensions of Group Membership 

Our current model focuses exclusively on a single membership dimension, social proximity, 
measured via co-authorship.  This unitary focus might limit the model’s ability to classify 
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domain application researchers whose social distance from core technical AI could limit the 
likelihood they will co-author with seed set scientists.  Social proximity is arguably the most 
direct measure of membership but may be too limiting for this use case. 

Expanding model input data with features designed to operationalize affinity and signaling 
could address that. Consider two concrete examples. 
 
Measurement Example: Affinity 
Affinity, framed in terms of language and interests, could be measured with vector embeddings 
from a pre-trained language model. SciBert,30 a transformer model trained on a large scientific 
corpus, could be fine-tuned, and used to position labelled and unlabeled authors in a 
“conceptual space” based on the text of their published abstracts.  Distances among them 
could be calculated in many ways either in cross-section or longitudinally.31 Smaller distances 
would indicate greater affinity.  

Pairwise distances among researchers could be represented as a valued network and 
treated as another route for label propagation. Affinity connections are likely to bridge gaps or 
collapse distances in co-authorship networks, as many people who are unlikely to ever work 
together directly study very similar things in very similar ways. So, adding a second network 
dimension focused on affinity has significant potential to improve model performance. 

Moreover, recent has work demonstrates the value of fine-tuning multiple versions of 
transformer models with text from different time periods to capture changes in the 
represented spaces themselves.32 This measurement approach could capture shifts in individual 
activities and larger alterations to the field as a whole.  Peoples’ interests might change over 
time, but the landscape on which they pursue their interests is also dynamic.33 

  
Measurement Example 2: Signaling 

Signaling can also be operationalized in numerous ways. One example that aligns nicely 
with our social definition of fields, relies on publication venues as markers of participation in 
particular research areas.  The choices scientists make about where to publish their work can be 
orthogonal to the substantive and methodological content of that work. They are also decisions 
about what intellectual communities to take part in and what kinds of professional identities to 
build and maintain.  If, as I often do, I have a paper that could fit in a policy journal, a sociology 
journal, or a management journal, deciding where to send it is about the field I want to engage 
with and the audience I want to reach. It is a decision about the signal I want to send about how 
the paper’s contents should be understood.  Researchers often read CVs with this kind of 
signaling in mind because where one chooses to submit and succeeds in placing papers tells 
insiders much about the kind of researcher one is or seeks to be.  

Since scientific publication is a two-sided affair where editors and reviewers select 
manuscripts in part based on “fit,” publication venue offers a clear example of a signaling 
mechanism.  As a result, we might define group membership in terms of the degree to which a 
pair of scientists’ scholarly works appear in overlapping venues. Greater similarity, by virtue of 
choices about submission and acceptance, equates to stronger signals of membership in the 
same group. Any one of several specific measures calculated on a weighted or unweighted 
author by journal matrix in cross-section or longitudinally could be used.  All of them could yield 
another valued network linking researchers. 
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A Multidimensional Network (with light formalization)  

For illustrative purposes consider a simple cross-sectional data structure that could be 
implemented for any research field.  The overall data structure would be a multidimensional 
graph eminently suited to tensor representation.34–37   
 Let the multidimensional graph ! = 	 {%, '} where % is a set of nodes {)! 	. . . )"} and 
multiple sets of edges {ℰ#.		.		. ℰ$} connect those nodes in ' dimensions. Edges in each 
dimension can be represented by a set of adjacency matrices A1 . . . AD where Ad[i, j] represents 
the connection in dimension d between node i and node j, which can be binary or valued. 
Nodes can also be represented by a feature vector, X, which, for the sake of simplicity I limit for 
now to a single binary label which indicates whether a given scientist was identified as a 
member of the “seed set” of AI researchers. 

 Assume that nodes represent individual researchers and edges represent connections 
defined on three dimensions: (1) Social proximity, A1[i,j] = 1 when scientist i has co-authored 
with scientist j, otherwise, 0; (2) Affinity, A2[i,j] = some real number value representing the 
conceptual similarity between scientist i and scientist j defined via a vector embedding; and (3) 
Signaling, A3[i,j] = some real number value representing the degree of commonality in 
publication venues between scientist i and scientist j. Figure 3 presents a schematic and 
hypothetical representation of this kind of graph.  

Without going into too much detail, consider scientist 1, who is isolated in A1 by virtue 
of having no co-authoring relationships.  In our initial model, which relied solely on social 
proximity, there is no path by which the AI label associated with node 3, an identified AI 

scientist, can propagate.  In this 
multidimensional data structure, however, 
there are multiple direct and indirect 
paths for propagation through the 
signaling (A3[1,3] > 0) and affinity 
dimensions.   

Likewise, nuance is added even 
when co-authorship ties are present. 
Consider the multiplex relationship 
connecting scientist 3 and scientist 5 
(A1[3,5] = 1, A2[3,5] > 0). The pattern of 
relationships these scientists indicates 
that they co-author together and that 
their abstracts use similar language but 
that (absent their co-authored work, 
which we would likely exclude in defining 
signaling ties) they publish in non-
overlapping journals.  It seems highly likely 
that a sophisticated model would classify 
scientist 5 as an AI researcher. However, 

Figure 3. Multidimensional Network for Field Classification 
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this qualitative pattern of ties might intuitively suggest that scientist 5 is a domain researcher 
whose application presents sophisticated enough challenges to serve as a case for AI tool 
development rather than a core AI researcher. Similarly, scientists 4 and 2, who have co-
authored with scientist 3 and who share both affinity and signaling relationships with them, 
seem highly likely to be pursuing research closer to the core of the field even though they are 
not observed in the seed set.  

 
Modelling Considerations. 
This data structure is tailor made for a deep learning model that operates on graphs.  Graph 
Neural Networks (GNNs) offer many possibilities for model designs that can take multi-step 
network neighborhoods, message passing, attention mechanisms, node and edge features into 
account using a growing panoply of operators, including some tailored specifically for 
multidimensional data.37–43 
 While a first-pass model should focus on simple classification, the base architecture 
could readily yield a quantitative estimate of individual scientists’ proximity to the fields’ core 
via a regression task. This kind of model applied to these kinds of data seems well equipped to 
satisfy all four desiderata I suggest for a strong field classification. More importantly, a unified 
social scientific conceptual framework offers a plausible basis for expecting that it could be 
generalized across CSA technology areas.  
 Deep learning models are basically opaque to explanation.44–46 Nevertheless, the 
intuitions suggested by Figure 3 provide useful “hooks” for helping lay audiences make sense of 
our logic and ideally the results.  The bedrock empirical insights we derive from well-established 
theory and findings can help concretize the workings of complex models. In what follows I draw 
heavily on (and entirely borrow formalizations from) a recent review by Bronstein and 
colleagues,40 who partition spatial GNNs into three basic “flavors.” I consider two, the 
convolutional and attentional, in some detail in order: (1) to lay the foundation for thinking 
about model design in this case; and (2) to suggest a general strategy for model design that 
helps make this kind of work a bit more legible for non-expert audiences.  

All spatial GNNs use local network structure to update the “state” of a focal node, u, by 
appeal the characteristics of the other nodes, v, to which it connects.  The key idea is the 
network neighborhood, ,% =	 {)	|	(/, )) ∈ 	ℰ}. A given GNN layer, essentially, iterates across 
the neighborhoods of every node in a network, updating their “states” based on the 
characteristics of their neighbors and then passing the new state information to a subsequent 
model layer for further processing. 

 For a network with both a node feature vector X and an adjacency matrix A the GNN 
layer “constructs a permutation equivariant function F(X, A) by applying shared permutation 
invariant functions 234%, 5&!6, over local neighborhoods. (Ref. 40: p 78)” By doing so, the GNN 
layer preserves some of the structural features of the larger network embedded in the 
adjacency matrix. It uses those features to weight the effects nodes have upon each other, 
making use of the complex interdependencies that are the hallmark of network data.  2 is often 
called the “updating” function.  

I dig into common approaches to 2 to consider how a GNN classifier anchored on our 
conceptual and empirical framework might be rendered legible to the audiences that need to 
understand and use its results.  What 2 does, at the micro level of a single node and its 
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immediate neighbors is somewhat akin to label propagation, which cashes out to providing an 
answer to our general question about membership in a group. In terms of this section’s focus, 
that question could be restated as: Given some mix of connections to nodes known to be AI 
researchers, how might differently configured GNN layers update information about whether a 
given scientist is also an AI research? What we are interested in, then, is hu, the “state” of the 
node u. In our case, that state might be something called “AI-ness.” Which brings us back to the 
some of the “flavors” of spatial GNNs defined by their general approach to 2. 
 
Relying on graph structure: Convolutional approaches 

 Convolutional GNN layers would address the question of a given scientists’ “AI-ness”, hu 
in the following generic fashion. 

 

(1) ℎ% = 	2 84%,⊕(∈&" :(%;(4()< 

 
Ignore 2 and ; for now. They are “model appropriate” transformations, generally affine, that 
are learned through the training process and often modified by activation functions such as the 
rectified linear unit (ReLU). What is important to understand to get an empirical taste of the 
approach is the aggregation function (⊕(∈&") and cvu.  The aggregation function is what 
determines how you get from many neighbors each of which has some state (in our simple 
case, binary) of AI-ness to an updated state for u. ⊕ must be permutation invariant, which 
means its value will not change if you switch around the order of the things operates on.  Sums, 
averages, and maximums are all common aggregation functions.  We are going to treat ⊕ as a 
sum.  The other term, cvu, is what determines how important each neighbor is for updating the 
state of u.  In convolutional approaches that term is a constant, which is generally defined by 
the the adjacency matrix A, sometimes after transformation.  

Stripped of all the gnarly but very useful mechanics of machine learning, what this 
resolves to in our simple case is a really basic empirical intuition. A scientists’ AI-ness is a 
function of the sum of the AI-ness of the other scientists to whom they are connected. Where 
our seed set labels are binary, this basically says a scientist has greater AI-ness when they are 
connected to more researchers who are themselves AI scientists. The more AI researchers you 
co-author with, share affinities with, and publish in similar venues with the more likely you are 
to be an AI scientist yourself. 

 There are complications.  We have conceptual reasons to believe that the different 
dimensions have different implications for establishing AI-ness. None of that matters to any 
deep learning model we might eventually train. Right now, we cannot really know how such a 
model will learn whatever it learns. Smarter people than me are working the problem.  But 
there are theory-based changes we could make to address some of our intuitions.  

For instance, we could modify cvu to deal with features of edges such as their values.  If 
we binarized all three dimensions, we might simply weight the effect of a neighbor’s AI-ness on 
u by the number of dimensions along which the pair were connected.  Recall Figure 3 and the 
difference between scientist 1 (who had one signaling connection to scientist 3, the known AI 
researcher) and scientists 2 and 4 who each connected to 3 in all three dimensions.  More 



 15 

complicated approaches could allow continuous values for all ties and apply further 
transformations to those.  

Regardless, convolutional approaches work primarily from network structure to update  
node states. In our case that means who you are connected to and whether they are part of the 
seed set is what matters. 
 
Dynamic weights based on attention.  

A somewhat more complicated flavor of GNN layer is attentional.39 
 

(2) ℎ% = 	2 84%,⊕(∈&" =(4%, 4();(4()< 

 
The only change here is the replacement of cvu with a(xu,xv), a self-attention mechanism.*  
Instead of treating v’s influence on u as a constant, driven more or less solely by observed ties, 
this approach introduces a learnable parameter that calculates “importance coefficients,” auv = 
a(xu, xv), which weight that influence by the features of neighbors. The underlying intuition 
might be summarized, in the social proximity dimension of our network, by the phrase “not all 
co-authors are created equal.”  Some partners have characteristics that make them more 
important or salient to u’s state than others. The attention parameter creates a variable means 
to accommodate such differences in an aggregation function. 
 Reducing this general description to a more specific empirical intuition in the highly 
simplified (single, binary node feature) case described above is trivial. So, imagine two possible 
complications. The first adds additional features to the node vector, X.  The second builds on 
the logic of the signaling dimension, A3, itself. In a research field, such as AI, the core empirical 
intuition is that u might be connected to an AI scientist via one or more of our dimensions but 
either be unaware of or uninterested in the fact of that connection.  

Absent a reason for u to pay attention to an AI co-author, the fact of co-authorship 
alone may have little effect on their state. This might be especially true in the fields where team 
sizes tend to be large, or where people tend to publish many papers with a wide array of co-
authors. Consider high energy physics or population genomics. Both are fields where AI tools 
are increasingly broadly used. Both are also fields where papers can routinely have hundreds to 
thousands of co-authors. The fact of co-authorship with an AI scientist on such a paper may 
have very little actual bearing on the AI-ness of any given physicist or genetics researcher. For 
what it is worth, things like norms about team size are exactly the kinds of research field 
characteristics that could be captured by the social and organizational approach we propose 
and that might need to be accommodated in seed set definitions. 

In the network that interests us, a node’s state change is driven by the intertwined 
mechanisms of social influence (people become more like those to whom they are connected) 
and homophily (people are more likely to connect to partners who they are already similar to). 
The idea that being connected to an AI scientist indicates one is more likely to be an AI scientist 
oneself either presumes that: (a) when non-AI researchers collaborate with AI researchers their 

 
* In the special case of a complete graph, which, if no threshold is applied, will be the case with the affinity 
dimension, A2, as we have defined it. This generic equation reduces to the forward pass of a transformer, which is 
typically driven by a multiheaded attention mechanism.47,40  
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AI-ness increases as a result of the interaction (social influence); or (b) that AI scientists are 
more likely to collaborate with one another and thus observing a tie reveals an otherwise 
difficult to observe categorical similarity (homophily).  

These two mechanisms are extremely difficult to tease apart,48,49 but both depend on 
social forms of attention. Whether an existing similarity draws one to connect to collaborator or 
an existing connection increases one’s similarity to them, people must: (1) be aware of the 
characteristics they share; and (2) those characteristics must be salient enough to factor in 
decision-making.50,51 Two questions follow: (1) what might lead researchers to be more aware 
of the AI-ness of their network neighbors? (2) what kinds of things are likely to make some 
network neighbors more salient than others? 

The answers may vary across our three network dimensions. The bar for awareness and 
salience seems likely to be higher for the affinity dimension, where the sheer fact that two 
scientists write in fashions that position them near each other in a complex vector space offers 
no assurance that they will know of each other or have ever read each other’s work. 
Regardless, either additional node features or a refined conception of signaling can offer 
examples of potential answers.  

Consider just one class of node features that might have traction. Higher profile 
neighbors are both noticeable and salient. Though it would offer no purchase on actual GNN 
outputs, an illustrative attention mechanism based on scientific visibility suggests that more 
highly cited neighbors, neighbors who have won high status awards, or neighbors affiliated with 
high visibility institutions or programs would exert greater influence u’s state than others. As I 
started work on this paper, I used all these markers to help guide my attention as I immersed 
myself in a large, complex, and wholly unfamiliar literature. 

Once again, the benefits of a broadly social conception of research fields are apparent.  
For instance, we do not need to determine exactly which institutions have the highest status in 
a field to recognize that institutional affiliations are likely to be important attention features. 
We don’t even need to attend to how the ranks of institutions change across fields. We simply 
need to know that all fields have status hierarchies and that they shape researcher attention. 
Knowing that, we construct input data that will increase our confidence and the legibility of a 
model design that includes attention mechanisms.  

Alternatively, we might return to the signaling dimension of our network.  The signaling 
mechanism, fundamentally, relies on attention.  Recall the intuition behind our proposed 
measure. Researchers try to place work in venues that reach intellectual communities to which 
they belong or hope to belong.  Publishing in those venues also, typically, leads to reviewing for 
them, which focuses limited individual attention even more tightly on a small set of journals 
and increases awareness of others publishing or trying to publish in them. As careers progress, 
ad hoc reviewing turns into program committee or editorial board memberships and 
sometimes program chair or editorial roles. All these transitions further focus attention and 
deepen both the visibility and the salience of others who publish in those places. 

 These generic social dynamics are common in contemporary research fields. They 
suggest that A3, the signaling adjacency matrix, measures signaling precisely because it 
represents a general structure of attention. This, for what it is worth, is entirely consistent with 
social science research that examines networks, categories and signals in a wide range of 
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fields.52–57 More concretely, this requires we attend to edge features in the signaling dimension 
as we think through the empirical logic of attention layers.41,42  

There are a few takeaways. First, paying attention to attention mechanisms requires us 
to think through: (a) the conceptual relationship between the social mechanisms (homophily, 
influence) that underpin our intuitions about state updating at the level of nodes and their 
neighborhoods; (b) the signaling dimension of our multi-dimensional graph and its implications 
for attention in the social organization of research fields; and (c) the way both should shape 
choices about what node and edge features are necessary to maintain some degree of 
conceptual, if not actual, explicability. Second, the discussion so far, which has focused solely 
on trying to make layer by layer sense of baseline empirical intuitions for different GNN 
methods already suggests implications for model design that, by and large, follow from the 
general conception of research fields we propose.  
 
Musing about model design 
One of the many tricks of designing and training a working model appears to lie in stringing 
together an appropriate set of layers tuned to accomplish a particular task. Such a design is 
beyond the scope of this white paper, and, frankly, beyond my skills. But that will not stop me 
from speculating and asking that anyone who might be interested in collaborating or simply in 
correcting me reach out. 
 With necessary disclaimers out of the way, the discussion above suggests a model 
design based on a “block” composed of three layers.  Our multi-dimensional network inputs 
would include three valued adjacency matrices (A1, A2, A3) corresponding to the network 
dimensions (proximity, affinity, and signaling), as well as a vector of node features (X) that 
comprised of scientist level measures defined by appeal to the social and organizational field 
definition and the task we want the model to perform. We want an effective, technology 
agnostic model and training data that accord with a conceptual framework that can be made 
legible to non-specialists. These data would provide the initial input states for a convolutional 
layer, which would update those states based on the structure of connection in each node’s 1-
hop neighborhood and pass the resulting, updated states on to an attentional layer 
emphasizing node features, which in turn would pass updated states to a second attentional 
layer focused on edge features.  

This is where, as I understand it, the magic of deep learning models begins to kick in. 
The learnable transformations we have been resolutely ignoring (2, ;) are updated across 
layers through the training process as are the weights that result from each layer.  As the input 
data pass through each layer of the model, the output of a prior layer serves as the input to a 
subsequent layer and through training the sequential application of different “flavors” of GNNs 
results in more and more refined predictions.  

 The three-layer block we suggest could thus be understood to yield a progressively 
more fine-grained aggregation of neighboring node states starting with the coarsest measure 
(connection) and proceeding through two levels of attentional weighting.  Depending on 
specific decisions about input data (particularly the values ascribed to edges and the features 
included in node vectors) different features of the broad social conception of group 
membership that underpins this proposed architecture might be emphasized.  Equally 
importantly, the application of multiple blocks could allow learned weights to reflect broader 
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neighborhoods, so a second “block” might be understood to encompass weights aggregated at 
network degree 2 (collaborators of collaborators), a third at network degree 3 (collaborators of 
collaborators of collaborators) etc.  Of course, many more details need to be worked out, but a 
general model architecture like that sketched in Figure 4 at least offers a starting point for 
thinking.   

Whether the final details of the “technology agnostic” model end up following this set of 
suggestions is not particularly important. What is important is that any model architecture 
included in the larger industries of ideas data system align with the general principles that 
helped us articulate this one.  
• Emerging technology areas are research fields defined in social and organizational terms 
• People define the boundaries and contents of research fields 
• Field Classification is a two-stage process where 

o Domain experts help define  a “technology-specific” researcher seed set that 
includes both core technical contributors and people pursuing domain applications 
in a range of areas  

o Social theory and network measures inform “technology-agnostic” data structures 
and a semi-supervised GNN model to expand the seed set via classification and 
regression tasks 

• The results of that field classification are essential inputs to an integrated “people-centric” 
data system that: 

o uses UMETRICS data to expand from authors to all grant employed research 
personnel working on a particular technology; 

o links both authors and non-author university grant employees to state 
administrative (U-I) wage data; 

o uses employee mobility identify specific employers who have hired people trained 
on grants relevant to that technology;  

o classifies industries by treating hiring as evidence that employers have “bid in” to 
pursue work relevant to the application or development of the technology in their 
products, services, or processes; 

o uses  “hiring bids” as indications that employers’ traditionally defined industries, the 
other employers in them, the jobs and the people who hold them should be 
included in efforts to describe and estimate the impacts of research investments; 

 
Following these general principles to classify fields and industries across CSA technology areas 
supports a measurement system with all the components needed to rigorously address the 
challenges posed by the CHIPS and Science Act.  
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Figure 4. Sketch of a GNN Architecture 
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Brief thoughts on AI-relevant extensions. 
 
Integrating a social and organizational classification strategy with the larger “industries of 
ideas” framework and data system also creates immediate opportunities to address additional 
AI-specific measurement concerns.   
 
Measuring the impact of “platform” investments. 
One of the major concerns of the National Artificial Intelligence Research Resource (NAIRR) task 
force report is the availability and accessibility of compute and testbed resources. But the 
impact of such platform investments can be difficult to evaluate.  The users of shared platforms 
typically hail from many fields and institutions. The platforms themselves generally collect 
information only on those who use them. This gap makes identifying a comparison group 
impossible, creating a roadblock for assessment. The prototype data system described here, in 
partnership with compute and testbed operators, is uniquely suited to address this challenge. 

 UMETRICS data on the complete set of grant funded people working at universities 
coupled with employment information derived from state U-I wage data offers many 
possibilities for developing counterfactuals.  Indicators and quantitative measures of “AI-ness” 
drawn from a strong field classification add more.  What is needed once such a system is 
constructed is simply the ability to link user information for compute and testbed resources to 
the larger data infrastructure at the individual level. That integration enables many research 
designs to assess scientific, technological, and workforce impact and could potentially guide 
more effective development and use of shared AI resources.  

   
Software and model development as an impact of research investment 
 One of the impressive analyses in the AI Index tracks technical improvements in model 
development.  This is an essential component of the field that I simply don’t address. It could be 
systematically examined by integrating another type of data into the industries of ideas 
ecosystem.    

The Institute for Research on Innovation & Science (IRIS), which I co-founded with Julia 
Lane and Bruce Weinberg, is currently working on a pilot project to describe the relationship 
between research funding and the development and use of research software. We extract 
software mentions58 from the text of scientific papers then link named packages, the papers 
and authors that use them to software repository metadata and UMETRICS. These linked data 
connect research investments, research publications and software tools. As is the case with the 
industries of ideas framework, those linkages “follow the people.”  By virtue of connection to 
repository metadata, they also provide many new data points about the code itself, its use and 
process of development, whether and how it is maintained and updated and other features.   

 Research software that implements new AI models, like other intermediate research 
products such as datasets,59 is an important research output that not often systematically 
studied. In AI -- where most papers are openly accessible in full text formats, where two major 
Python packages (PyTorch and Tensorflow) are the primary basis for development, expansion, 
and application of new machine learning models, where standard benchmark datasets are 
commonly used and referenced, and where code is generally shared upon release of working or 
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conference papers -- linking code repository metadata into a unified data architecture could 
offer immense value.   

First, such data could expand work like that Stanford’s Human-Centered Artificial 
Intelligence institute already does to track the characteristics and use of new models. Second, it 
might allow us to add entire new classes of inputs, outputs, and, potentially, people to the field 
and industry classifications we describe here. Third, we might expand affinity and signaling 
dimensions for field classification input data by appeal to use of the same tools or datasets. 
Finally, to the extent that code developers and maintainers do not completely overlap with 
authors on papers, we might be able to identify yet another group of people touched by AI 
researcher investments whose careers could aid in industry classification.  While such 
expansions might not be generalizable across all CSA fields, they seem likely to be particularly 
valuable for those where code and data are both core outcomes and enabling tools such as AI, 
cybersecurity, and distributed ledger technologies. 
 
Modelling the dynamics of regional innovation ecosystems 
The CHIPS and Science Act is one of several substantial “place-based” investments made under 
the Biden administration.  Some, including those in the CSA, are larger than similar Great 
Society and even New Deal programs. Associated measurement challenges reach beyond job 
and employer effects to holistic program impact on regional innovation ecosystem dynamics 
and outcomes.   
 Two features that distinguish successful and unsuccessful regional innovation 
ecosystems are: (1) the founding of “second generation” start-up companies;60–64 and (2) the 
formation of dense cross-employer mobility networks. Early research on the success of Silicon 
Valley highlighted both, citing the “Fairchildren” firms that grew out of Fairchild  
Semiconductor and the ability to change jobs without changing carpools in explanations of to 
the Valley’s resilience relative Boston’s Route 128.65,66 Learning by hiring remains a key source 
of competitive advantage in technology intensive regional ecosystems.67,68 

A high-profile example from contemporary Bay Area AI clearly illustrates the point.  
Consider “Attention is all you need,”47 a 2017 paper that helped spark the explosion of large 
language models that has been cited about 105,000 times. It was written by 8 authors at 
Google. By 2021, all 8 had departed.  Searching for them today reveals that they have 
collectively worked for or founded 9 AI companies since leaving Google.  Six of the original 8 
authors remain in the Bay Area.  Seven of the 9 companies, most of which were founded after 
the paper’s publication, are also located in region.  The mobility networks among employers 
created by such moves and the founding of such “later generation” firms are a large part of 
what make regions like the Bay Area such successful and resilient technology ecosystems.  

But the data and tools needed to systematically (1) assess when and how investments of 
different sorts might help regions become self-sustaining, (2) support second generation 
entrepreneurship, or (3) predict how such networks develop have never existed at scale. The 
data systems sketched here, which match rich, though restricted, workforce date with detailed 
bibliometric and university information could change that, dramatically. Long time series data 
for established and emerging regions with and without investments from programs like the 
Regional Innovation Engines or EDA Technology Hubs allow pre and post-investment analyses. 

https://www.brookings.edu/articles/breaking-down-an-80-billion-surge-in-place-based-industrial-policy/
https://www.upjohn.org/research-highlights/chips-and-science-act-offers-funding-place-based-policies-unparalleled-us-history
https://www.upjohn.org/research-highlights/chips-and-science-act-offers-funding-place-based-policies-unparalleled-us-history
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Graph based deep learning models trained on those types of data could offer a wide range of 
new insights at the regional level.  

 Models that treat regions as networks and use graph classification to identify structural 
features that are leading indicators of regional success offer one interesting possibility.  Link 
prediction tools that focus on the evolution of mobility ties within the region (or into it) offer 
another.  In the latter case, we might envision exciting possibilities for both understanding the 
regional development around anchor tenants such as universities12,69,70 and the role that key 
“on ramp” institutions such as community colleges play in ensuring broad access to jobs 
created by programs like the Regional Innovation Engines.  Combining deep learning models 
with granular administrative data might go a long way toward cracking questions about 
educational and workforce capacity and their relationship to regional dynamism.  The ability to 
address such questions would be dramatically increased by inclusion of state maintained higher 
education or K-12 data in the industries of ideas ecosystem.  

If education data could be included in the mix, it might become possible, for the first 
time, to systematically assess the essential role that skilled technical workers play in creating 
and sustaining regional success. This kind of analysis would be particularly important for 
questions about manufacturing capacity and manufacturing-oriented CSA technology areas. In 
the context of reciprocal partnerships and effective governance the need for strong privacy 
protections on restricted data might make famously complex and inexplicable models an 
important selling point. 
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